

BTEC Applied Science

At HGSS we complete the Pearson Edexcel Level 3 Extended Certificate in Applied Science. This is studied over two years and is equivalent to one A-level.

Course Organisation

In Year 12 you will complete units 1 and 3 which are externally assessed (exam units) and in Y13 unit 2 and 9 which are coursework based.

Unit 1 is a blend of topics based on Chemistry, Biology and Physics and how this is applied to the world around us. This unit has an external exam.

Unit 2 is a practical coursework-based unit and consists of 4 tasks relating to Analytical Chemistry.

Unit 3 is an externally examined practical skills unit.

Unit 9 is a coursework unit covering control and reproduction in humans

On the following pages are a few review and research tasks to help you prepare for your start in Year 12 studying Applied Science

Biology

For biology we study cells, cell processes and a range of body systems. The emphasis is on application of knowledge, especially in relation to health, illness and treatments.

Review and revise your knowledge of cells by visiting these websites and watching these videos:

https://www.dailymotion.com/video/x6z0pzg

https://www.s-cool.co.uk/a-level/biology/cells-and-organelles

https://www.youtube.com/watch?v=gFuEo2ccTPA

https://www.youtube.com/watch?v=gcTuQpuJyD8

https://www.youtube.com/watch?v=L0k-enzoeOM

https://www.youtube.com/watch?v=qCLmR9-YY7o

http://www.cellsalive.com/

Activity B1: Cell Structure

Label the following cell structures then colour then, select different colours for each structure and use them to colour the coding circles and the corresponding structures in the illustration.

Activity B2: Specialised cells

Watch these videos and use the information to complete this table: <u>https://www.youtube.com/watch?v=cj8dDTHGJBY</u> <u>https://www.youtube.com/watch?v=9UvlqAVCoqY</u>

Cell	Name of cell	Plant or animal?	Function	Adaptations
Cytoplasm Mitochondria	Fat cell			1. 2. 3.
	Leaf epidermal cell			1. 2. 3.
	Xylem cell			1. 2. 3.

Cell	Name of cell	Plant or animal?	Function	Adaptations
	Gland cell			1. 2. 3.
	Sperm cell			1. 2.
C.	Sperin cen			3.
Cellulose cell wall	Palisade cell			1.
Cell membrane Vacuole Vacuole Chloroplast (contains chlorophyll)				2.
Nucleus Cytoplasm				5.
				1.
	Red blood			2.
288	cell			3.

Cell	Name of cell	Plant or animal?	Function	Adaptations
	Root hair cell			1. 2. 3.
	Stomata (guard cell)			1. 2. 3.
	Ovum (egg cell)			1. 2. 3.
	Muscle cell			1. 2. 3.
	Nerve cell (neurone)			1. 2. 3.

Activity B3: DNA Detective

Read the information on these websites:

http://www.bbc.co.uk/education/guides/z36mmp3/revision

http://www.s-cool.co.uk/a-level/biology/dna-and-genetic-code

And take a look at these videos:

https://www.youtube.com/watch?v=8kK2zwjRV0M&list=PL3EED4C1D684D3ADF&in

<u>dex=10</u>

http://ed.ted.com/lessons/the-twisting-tale-of-dna-judith-hauck

http://ed.ted.com/lessons/where-do-genes-come-from-carl-zimmer

Produce a wall display to put up in your classroom in September.

Your display should use images, keywords and simple explanations to:

- Define gene, chromosome, DNA and base pair
- Describe the structure and function of DNA and RNA
- Explain how DNA is copied in the body
- Outline some of the problems that occur with DNA replication and what the consequences of this

Chemistry

Some of the topics we will study are:

- Atoms, elements, compounds
- Electronic structure
- Groups in the Periodic Table
- Structure and Bonding
- Moles
- Reactions of acids

Unit 2 gives you the opportunity to investigate these ideas in a more practical and independent way, in particular by carrying out experiments related to:

- Titrations
- Measuring pH
- Making and purifying chemicals
- Chromatography
- Colorimetry

To get you started on Chemistry, review and research the following topics.

https://youtu.be/H0rFDakTI-0

https://www.webelements.com/

https://www.bbc.co.uk/bitesize/topics/zxnftv4

Then complete the activities on the following pages.

Activity c1: Use the information from your research to draw a diagram of an atom.

Activity C2: Complete the table below to summarise the properties of the atom.

Particle	Relative mass	Charge
Proton		
Neutron		
Electron		

Activity C3: There are 92 naturally occurring elements.

Each element has physical and chemical properties that are similar and different to the others. The periodic table is the chemist's way to organise the elements based on their atomic structure. Using any of the links, colour in the periodic table as follows:

- Label the following groups:
- The alkali metals
- The alkaline earths
- The transition metals
- The halogens
- The noble gases

							1.0	1									40
							H hydrogen 1										He helium 2
6.9 Li lithium 3	9.0 Be beryilium 4											10.8 B baron 5	12.0 C carbon 6	14.0 N nitrogen 7	16.0 О акудет 8	19.0 F fluorine 9	20.2 Ne neon 10
23.0 Na sodium 11	24.3 Mg magnesium 12											27.0 Al alumtrium 13	28.1 Si silican 14	31.0 P phosphorus 15	32.1 S suttur 16	35.5 Cl chlorine 17	39.9 Ar argon 18
39.1 K potassium 19	40.1 Ca calcium 20	45.0 Sc scandium 21	47.9 Ti titanium 22	50.9 V venadium 23	52.0 Cr chromium 24	54.9 Mn mangarese 25	55.8 Fe iron 26	58.9 Co cobalt 27	58.7 Ni nicket 28	63.5 Cu copper 29	65.4 Zn ziec 30	69.7 Ga gatthum 31	72.6 Ge germanium 32	74.9 As arsenic 33	79.0 Se selentum 34	79.9 Br bromine 35	83.8 Kr krypton 36
85.5 Rb rubidium 37	87.6 Sr strontium 38	88.9 Y yttrium 39	91.2 Zr zirconkam 40	92.9 Nb niabium 41	95.9 Mo nelytidenuit 42	[98] Tc technetium 43	101.1 Ru ruthenium 44	102.9 Rh rhodium 45	106.4 Pd pelladium 46	107.9 Ag silver 47	112.4 Cd cadmium 48	114.8 In indium 49	118.7 Sn tin 50	121.8 Sb antimony 51	127.6 Te tellurium 52	126.9 1 Iodine 53	131.3 Xe xenon 54
132.9 Cs caesium 55	137.3 Ba barium 56	138.9 La* Lanthanum 57	178.5 Hf hafnium 72	180.9 Ta tantalum 73	183.8 W tungsten 74	186.2 Re rhenium 75	190.2 Os ostitum 76	192.2 Ir indium 77	195.1 Pt platinum 78	197.0 Au gold 79	200.6 Hg mercury 80	204.4 TI theitium 81	207.2 Pb lead 82	209.0 Bi bismuth 83	[209] Po polorium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr Irancium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf suberfactum 104	[262] Db dubrirum 105	[266] Sg seaborgium 106	[264] Bh botvium 107	[277] Hs hassium 108	[268] Mt methorium 109	[271] Ds demetatum 110	[272] Rg roentgenkun 111	Ele	ments with	atomic nu but not	unbers 112 fully authe	-116 bave nticated	been repo	rted
* Lanti * Actin	nanide seri ide series	es	140 Ce cerium 58	141 Pr praseodymian 59	144 Nd reodymium 60	[147] Pm promethium 61	150 Sm samarium 62	152 Eu europtum 63	157 Gd gsdolimum 64	159 Tb terbium 65	163 Dy dysprosium 66	165 Ho holmium 67	167 Er erbium 68	169 Tm thullum 69	173 Yb ytterbium 70	175 Lu Iutetium 71	
			232 Th thorium 90	(231) Pa protectivium 91	238 U uranium 92	[237] Np neptunium 93	[242] Pu plutonium 94	[243] Am americium 95	[247] Cm 96	[245] Bk berketium 97	[251] Cf catifornium 98	(254) Es Leinsteinium 99	[253] Fm fermium 100	[256] Md mesktextan 101	[254] No nobelium 102	(257) Lr lawrencium 103	

Activity CA: Use an appropriate colouring-in key to identify the following:

etals		I	Non-N	letal	5		Se	mi-m	etals		G	ases			Liqu	uids	
							1.0 H hydrogen 1										4.0 He helium 2
6.9 Li lithium 3	9.0 Be beryllium 4											10.8 B boron 5	12.0 C carbon 6	14.0 N nitrogen 7	16.0 O axygen 8	19.0 F Nuorine 9	20.2 Ne neon 10
23.0 Na sodium 11	24.3 Mg magnestum 12											27.0 Al aluminium 13	28.1 Si stilicon 14	31.0 P phosphorus 15	32.1 S sulfur 16	35.5 Cl chlorine 17	39.9 Ar argon 18
39.1 K potassium 19	40.1 Ca calcium 20	45.0 Sc scandium 21	47.9 Ti titanium 22	50.9 V vanadium 23	52.0 Cr chromium 24	54.9 Mn manganese 25	55.8 Fe ston 26	58.9 Co cobalt 27	58.7 Ni nickel 28	63.5 Cu copper 29	65.4 Zn zinc 30	69.7 Ga gattium 31	72.6 Ge germanium 32	74,9 As arsenic 33	79.0 Se selenium 34	79.9 Br bromine 35	83.8 Kr krypton 36
85.5 Rb rubidium 37	87.6 Sr strontium 38	88.9 Y yttrium 39	91.2 Zr zirconium 40	92.9 Nb niobium 41	95.9 Mo motybdenum 42	[98] Tc technetium 43	101.1 Ru ruthenium 44	102.9 Rh rhodium 45	106.4 Pd palladium 46	107.9 Ag silver 47	112.4 Cd cadmium 48	114.8 In indium 49	118.7 Sn tin 50	121.8 Sb antimony 51	127.6 Te tellurium 52	126.9 iodine 53	131.3 Xe xenon 54
132.9 Cs caesium 55	137.3 Ba barium 56	138.9 La* lanthanum 57	178.5 Hf hafnium 72	180.9 Ta tantalum 73	183.8 W tungsten 74	186.2 Re rhenium 75	190.2 Os osmium 76	192.2 Ir iridium 77	195.1 Pt platinum 78	197.0 Au gold 79	200.6 Hg mercury 80	204.4 Tl thallium 81	207.2 Pb lead 82	209.0 Bi trismuth 83	[209] Po potonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf nutherfordium 104	[262] Db dubinium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[277] Hs hassium 108	[268] Mt meitnenium 109	[271] Ds damstadtium 110	[272] Rg roentgenium 111	Eler	ments with	atomic nu but not	mbers 112 fully authe	-116 have nticated	been repo	rted
* Lanti * Actin	hanide seri iide series	es	140 Ce cerium 58	141 Pr praeodyntar 59	144 Nd neodymium 60	[147] Pm promethium 61	150 Sm samarium 62	152 Eu europium 63	157 Gd gedolinium 64	159 Tb terbium 65	163 Dy dysprosium 66	165 Ho holmium 67	167 Er erbium 68	169 Tm thulium 69	173 Yb ytterbium 70	175 Lu Iutetium 71	
			232 Th thorium 90	[231] Pa protectimum 91	238 U uranium 97	[237] Np neptunium 93	[242] Pu plutonium 94	[243] Am americium 95	[247] Cm outum 96	[245] Bk berkelium 97	[251] Cf catifornium 98	[254] Es eirsteinium	[253] Fm fermlum 100	[256] Md mendelevium 101	[254] No nobelium 102	[257] Lr lawrencium 103	

Activity C5: Use the periodic table to identify the properties of following:

Element	Symbol	Mass No.	Atomic No.	No. of electrons	No. of Protons	No. of Neutrons
Lithium						
Sodium						
Oxygen						
Chlorine						
Carbon						
Hydrogen						

Activity CG: Outline the key features of the periodic table:

- What patterns of reactivity are seen in group 1?

- What patterns of reactivity are seen in group 7?

- What are the key features of group 1 metals?

- What are the key features of group 7?

We study some physics in Unit 1. The focus is on waves. For the physics task, watch these videos and read the information here:

https://www.youtube.com/watch?v=ZADaRGEUCDw

https://www.youtube.com/watch?v=HPcAWNIVI-8

Now use the words in the word bank (below) to complete these statements:

- 1. _____ waves are shorter than radio waves
- ______ is the distance between one point of a wave and the same point in the next wave.
- 3. ______ is the number of waves per unit of time.
- 4. _____ waves occur when the motion of the medium is in the same direction of the wave.
- 5. ______ waves have a colour spectrum known as ROYGBIV.
- 6. ______ waves disturb matter.
- 7. The ______ is the top of the wave.
- 8. The ______ is the bottom of the wave.
- 9. _____ is the maximum distance that matter is displaced from its resting position.
- 10. ______ waves are produced by stars and galaxies.
- 11. ______ waves occur when the motion of the medium is at right angles (perpendicular) to the direction of the wave.
- 12. _____ waves are used in heat lamps.
- 13. _____ waves are utilized by insects to locate nectar.
- 14. _____ waves are transverse waves that disturb electromagnetic fields.
- 15. _____ waves have the shortest wavelength and the highest frequency.

Crest	Frequency	Mechanical	Gamma
Trough	Transverse	Radio	Infrared
Wavelength	Longitudinal	Ultraviolet	Micro
Visible	light	Amplitude	Electromagnetic

Pupil Background Information

Name	
GCSE results	
Why you chose to study science BTEC	
What are you most looking forward to about studying Science BTEC?	
What are you most apprehensive about studying BTEC?	
What areas of Biology interest you the most?	

Please bring the completed background info sheet to your first lesson

